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Phase transitions in two-variable coupled map lattices

Yu Jiang*
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~Received 25 March 1997!

It is shown that a two-variable coupled map lattice can reproduce certain dynamical features of oscillatory
and excitable reaction-diffusion systems. Many well-known dynamics such as synchronization of spatiotem-
poral chaos, bistable dynamics, and traveling spatiotemporal patterns are observed in our numerical simula-
tions. The ingredients responsible for the appearance of those phase transitions are analyzed.
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Characterization of spatially extended systems is of g
importance for understanding the dynamics of many ph
cal, chemical, and biological systems.@1–4# The theoretical
description of such systems is usually given in terms of
partial differential equations~PDEs!, in particular, the
reaction-diffusion equation. The bifurcation structure
PDEs is, in general, difficult to analyze and numerical so
tion is often time consuming and sometimes impossible
order to study the spatial pattern formation and dynam
phase transitions in reaction-diffusion systems it is of inter
to simplify the dynamics and consider discrete models of
spatially distributed medium. Considerable effort has be
devoted to the construction of discrete models for excita
systems@5–7#. It is more difficult to construct discrete mod
els for oscillatory systems that reproduce major well-kno
features of the dynamics@8,9#. Recently, phase resetting dy
namics has been studied by using a coupled map mode
oscillatory reaction-diffusion systems@10,26#. It is found that
such a discrete model is able to reproduce faithfully the m
jor features of the complex wave propagation processes
relaxation oscillator reaction-diffusion system.

The dynamics of discrete model systems such a
coupled map lattice~CML! has attracted considerable atte
tion in recent years for their combination of computation
efficiency and phenomenological richness@11–15#. In this
paper, we propose a two-variable coupled map lattice
model the pattern forming chemical and biological system
where two or more coupled variables are usually involv
Our purpose is to investigate the phase transition and pat
forming dynamics utilizing discretized space and time cor
sponding to the usual coarse-grained description of
reaction-diffusion processes. As will be shown later, in sp
of its simplicity, our model system can capture many ess
tial features of real reaction-diffusion systems, such as os
latory, bistable, and excitable dynamics. On the other ha
the two-variable coupled map lattices can also be regarde
two coupled map lattices linked by common signals. The
fore, it represents a different synchronization approa
which is, in principle, drawn from a scheme for controllin
spatiotemporal chaos@16#. A remarkable feature of this syn
chronization approach is that a chaotic orbit of one system
stabilized about a chaotic orbit of the other@17#. Thus, once
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synchronization is established, the coupling signals van
just as in the case of controlling chaos@18#.

A two-variable coupled map lattice may be defined by

xn11~ i !5~12e2c! f „xn~ i !…1 1
2 e@ f „xn~ i 21!…

1 f „xn~ i 11!…#1cg„yn~ i !…,
~1!

yn11~ i !5~12e82c8!g„yn~ i !…1 1
2 e8@g„yn~ i 21!…

1g„yn~ i 11!…#1c8 f „xn~ i !…,

wheref (x) andg(y) are arbitrary functions, representing th
local reaction dynamics involved. The variablesx andy may
describe the concentrations of ‘‘trigger’’~or ‘‘activator’’ !
and ‘‘controller’’ ~or ‘‘inhibitor’’ !, depending on the chemi
cal or biological processes determined by the reacti
diffusion equations. For the purpose of this paper, we res
ourselves to the case of identical reaction dynamics,
g(x)5 f (x). We further assume thatf (x)5ax(12x), which
is the logistic map. For convenience, we assume that
variablesx andy represent the amplitudes of systemsA and
B, respectively. In the following, we report some interesti
properties of the coupled system

xn11~ i !5~12e2c! f „xn~ i !…1 1
2 e@ f „xn~ i 21!…

1 f „xn~ i 11!…#1c f„yn~ i !…,

yn11~ i !5~12e82c8! f „yn~ i !…1 1
2 e8@ f „yn~ i 21!…

1 f „yn~ i 11!…#1c8 f „xn~ i !…, ~2!

f ~x!5ax~12x!.

Here n is a discrete time step andi is a lattice point (i
51,2, . . . ,N). N denotes the system size. The period
boundary conditionsxn( i 1N)5xn( i ) and yn( i 1N)5yn( i )
are assumed. It is clear that the coupled system~2! is char-
acterized by two groups of parameters (a,e,c) and
(a,e8,c8). By varying the system parameters, a large vari
of dynamical behaviors and spatiotemporal patterns may
discovered. Several special cases, however, are worth m
tioning. By settingc85c and e85e, Eq. ~2! reduces to a
symmetrically coupled system. The unidirectionally linke
CML systems are only the special cases withc850 or c
50. On the other hand, Eq.~2! may describe a class o
2672 © 1997 The American Physical Society
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56 2673PHASE TRANSITIONS IN TWO-VARIABLE COUPLED . . .
coupled systems whose constituent elements represent d
ent dynamical systems, if we assume thata8Þa and/ore8
Þe. For the purpose of illustration, we focus our attenti
on two different cases:~i! a85a, c85c, e85e and ~ii ! a8
5a, c85c, ande8Þe, that is, we will study the influence o
different diffusive couplings on the dynamics of the mod
system~2!.

We have systematically investigated the dynamical
havior of Eq. ~2!. Many interesting features of such
coupled system are observed from numerical simulatio
The numerical results reported in this work are performed
a5a854, which corresponds to the fully developed cha
regime. The lattice size is taken to beN5100. We notice
that the lattice size may play a role near the pattern com
tition intermittency; otherwise its influence is minima
Equation~2! with the above conditions reveals several d
ferent dynamical behaviors.

For case~i!, i.e., two identical systems, the followin
phases are observed.

(a) Synchronized oscillation. For sufficiently small values
of the couplingc, systemA is synchronized with systemB.

FIG. 1. Amplitude-space plot of mutual synchronization of sp
tiotemporal chaos, fore5e850.1 andc5c850.18. The last 20 it-
erations are plotted from a total 80 020 iterations.

FIG. 2. Time evolution ofyn(13) for e50.1, e850.2, andc
5c850.2. The amplitudexn(13) exhibits similar behavior. Only
the last 6000 steps are plotted.
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Both systems settle down in a spatially homogeneous, t
porally periodic state of period 2, through pattern compe
tion intermittency. In view of the chaotic dynamics of ind
vidual sites and the very weak coupling, this may
explained as the suppression of chaos by the selection
spatiotemporally regular state from among many coexist
spatiotemporal orbits admitted by the system.

(b) Asynchronous chaotic state. When the couplingc is
raised a little, two systems desynchronize and exhibit s
tiotemporal chaos.

(c) Mutually synchronized spatiotemporal chaos. For in-
termediate coupling strength, in our case for approximat
0.19,c,0.84, synchronization of spatiotemporal chaos
achieved. We found that the time required for synchroni
tion is approximately inversely proportional to the couplin
strength. In a deep synchronization regime~corresponding to
large values ofc!, the two systems are desynchronized in
couple of iterations if the coupling is switched off~i.e., by
settingc5c850). This characteristic may be useful in th
communications applications of synchronization of the s
tiotemporal chaos.

(d) Bistable states. As we further increase the couplingc,
the coupled systems may evolve into one of the two acc
sible stable states, depending on the initial conditio

-

FIG. 3. Amplitude-space plot for two different time interval
~a! 100 100,n,1 000 110 and~b! 100 600,n,1 000 610. The
parameters’ values are the same as in Fig. 2.
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2674 56YU JIANG
The two systems behave in a complementary way such
when systemA settles down in one of the two possible sp
tiotemporally homogeneous states, systemB evolves into the
other one, and vice versa.

For larger values of the coupling, the coupled system~2!
shows asynchronous spatiotemporal chaos, which may
termed defect-mediated turbulence in view of the way
which the coupled system~2! becomes spatiotemporally cha
otic. Figure 1 shows the synchronization of spatiotempo
chaos.

We now turn to case~ii !, whereeÞe8 is assumed. We
choose thate50.1 ande850.2. For such a system, a com
plete synchronization of both amplitude and phase seem
be impossible. Nevertheless, phase synchronization
chaotic modulation of the amplitudes is observed in our
merical simulations. In addition to the usual spatiotempo
patterns found in CMLs, some different properties are
covered. One of the most intriguing features of the coup
system~2! is the existence of traveling spatiotemporal p
terns, which is similar to what is observed in the one-w
coupled logistic lattice@19# and CML with local phase slips
@20#. However, the mechanism leading to such a symme
breaking transition shown by our model system seems to
different from that discussed in Ref.@20#, where the traveling
wave is maintained by a local phase slip. Figure 2 shows
time evolution of a selected individual site. Clearly seen
the traveling wave of frozen spatiotemporal patterns cons
ing of periodic, quasiperiodic, and defect turbulence sta
The period of this traveling wave is approximatelyT
.1000 and the wavelength seems to be the very size of
lattice. Then the velocity of the traveling wave is estimat
as v;0.1 ~sites per step!. The dynamics of this traveling
state may be described as periodic motion with cha
modulation. The velocity of the traveling patterns may d
pend on the system parameters, especially the diffusive
pling e. Figure 3 shows the spatial structure at success
iterations, which illustrate the direction and the velocity
s,

m

at
-

be
y

l

to
th
-
l
-
d
-
y

-
e

e
s
t-
s.

he
d

ic
-
u-
e

f

the traveling patterns. It is interesting to note that the t
systems, represented by two variablesx and y, behave in a
synchronized manner. In fact, they are in a state of ph
synchronization.

The existence of a traveling-wave solution to Eq.~2! may
be attributed to the difference of spatial couplings in the t
systems. Because the difference of the diffusive coupli
between the two individual systems may cause an an
tropic diffusion in the coupled system~2!, this in turn leads
to the traveling wave, as observed in one-way logistic l
tices. As suggested in Ref.@20#, it is reasonable to expect th
coexistence of traveling attractors with different velocities
we change the nonlinearitya.

For intermediate values of the couplingc, we found a
zigzag pattern that is spatially and temporally period 2. B
systems oscillate synchronously with a constant differe
between their amplitudes. For large values ofc, the coupled
system~2! is found in asynchronous chaotic states.

In conclusion, we have investigated numerically a on
dimensional two-variable coupled map lattice model syste
Many interesting features of such a system, such as sync
nization of spatiotemporal chaos, bistable state, and a dif
ent class of traveling spatiotemporal patterns, are discove
The symmetry-breaking transitions as manifested in
bistable dynamics and in the traveling waves with selec
direction and wavelength are rather remarkable in view
the symmetrical structure of our model system~2!. It should
be stressed that even though the coupled system~2! is simple
and abstract, it still can capture certain essential feature
real reaction-diffusion systems.

In view of the recent interest in the synchronization
chaotic signals@21–25#, it is worthwhile to point out that Eq.
~2! also provides an approach to mutual synchronization
spatiotemporal chaos. We found that this method is v
general and robust in that it works for a wide range of syst
parameter values. We plan to give a detailed discussion
future work.
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