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Phase transitions in two-variable coupled map lattices

*
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It is shown that a two-variable coupled map lattice can reproduce certain dynamical features of oscillatory
and excitable reaction-diffusion systems. Many well-known dynamics such as synchronization of spatiotem-
poral chaos, bistable dynamics, and traveling spatiotemporal patterns are observed in our numerical simula-
tions. The ingredients responsible for the appearance of those phase transitions are analyzed.
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Characterization of spatially extended systems is of greasynchronization is established, the coupling signals vanish,
importance for understanding the dynamics of many physijust as in the case of controlling chads].

cal, chemical, and biological systeifis-4] The theoretical A two-variable coupled map lattice may be defined by
description of such systems is usually given in terms of the o _ 1 )

partial differential equations(PDES, in particular, the Xn+1(1) = (1= €= c)f(xn(i)) + 2 €[ F(Xn(i = 1))
reaction-diffusion equation. The bifurcation structure of +F(x,(i +1)]+cglyn(i)),

PDEs is, in general, difficult to analyze and numerical solu- (1)

tion is often time consuming and sometimes impossible. In -y (i)=(1—¢'—c')g(y,(i))+ 2€'[g(y,(i— 1))

order to study the spatial pattern formation and dynamical

phase transitions in reaction-diffusion systems it is of interest +9(yn(i+1))]+c’ f(xy(i)),

to simplify the dynamics and consider discrete models of the

spatially distributed medium. Considerable effort has beetvheref(x) andg(y) are arbitrary functions, representing the

devoted to the construction of discrete models for excitabléocal reaction dynamics involved. The variableandy may

systemd5-7]. It is more difficult to construct discrete mod- describe the concentrations of “trigger(or “activator”)

els for oscillatory systems that reproduce major well-knownand “controller” (or “inhibitor” ), depending on the chemi-

features of the dynamid$,9]. Recently, phase resetting dy- cal or biological processes determined by the reaction-

namics has been studied by using a coupled map model @fffusion equations. For the purpose of this paper, we restrict

oscillatory reaction-diffusion systeri$0,26]. It is found that ~ ourselves to the case of identical reaction dynamics, i.e.,

such a discrete model is able to reproduce faithfully the mag(x) = f(x). We further assume th&{x) =ax(1—x), which

jor features of the complex wave propagation processes in & the logistic map. For convenience, we assume that the

relaxation oscillator reaction-diffusion system. variablesx andy represent the amplitudes of systefsind
The dynamics of discrete model systems such as &, respectively. In the following, we report some interesting

coupled map latticéCML) has attracted considerable atten- properties of the coupled system

tion in recent years for their combination of computational

efficiency and phenomenological richnddsl—15. In this Xn+1(1)= (1= €= C)f(xa(1))+ 5 €[ f(xq(i = 1))
paper, we propose a two-variable coupled map lattice to . i+ 1)1 +cf ;

model the pattern forming chemical and biological systems, Ol +1)]+etlya(i),

where two or more coupled variables are usually involved. =(1—¢' —cf i+ Lef i—1

Our purpose is to investigate the phase transition and pattern- Ynea()=(1~e )+ 2Ty~ 1))
forming dynamics utilizing discretized space and time corre- + iy (i+1)]+c' f(xy(1)), 2
sponding to the usual coarse-grained description of the

reaction-diffusion processes. As will be shown later, in spite f(x)=ax(1—x).

of its simplicity, our model system can capture many essen-
tial features of real reaction-diffusion systems, such as oscilHere n is a discrete time step andis a lattice point {
latory, bistable, and excitable dynamics. On the other hand=1,2,...N). N denotes the system size. The periodic
the two-variable coupled map lattices can also be regarded &wundary condition,(i +N)=x,(i) andy,(i +N)=y(i)
two coupled map lattices linked by common signals. Thereare assumed. It is clear that the coupled sys{2nis char-
fore, it represents a different synchronization approachacterized by two groups of parameters,4,c) and
which is, in principle, drawn from a scheme for controlling (a,€’,c’). By varying the system parameters, a large variety
spatiotemporal chad4.6]. A remarkable feature of this syn- of dynamical behaviors and spatiotemporal patterns may be
chronization approach is that a chaotic orbit of one system igliscovered. Several special cases, however, are worth men-
stabilized about a chaotic orbit of the otj&#]. Thus, once tioning. By settingc’=c and €' =€, Eq. (2) reduces to a
symmetrically coupled system. The unidirectionally linked
CML systems are only the special cases with=0 or ¢
*Electronic address: jiang@admin.fc.uaem.mx =0. On the other hand, Eq2) may describe a class of
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FIG. 1. Amplitude-space plot of mutual synchronization of spa- (b)
tiotemporal chaos, foe=¢'=0.1 andc=c’=0.18. The last 20 it- . o 0.8 890 #
mp —0.] 09 YED CUEE e )
erations are plotted from a total 80 020 iterations. SRS, mocscomoscecosst 0 & SR LS g TG § o R
coupled systems whose constituent elements represent diffe 0.8} 1
ent dynamical systems, if we assume that-a and/ore’ "
# e. For the purpose of illustration, we focus our attention 2 0.7} 1
on two different casedi) a’'=a, c’'=c, € =€ and(ii) a’ E
=a, ¢'=c, ande’ #¢, that is, we will study the influence of = 06¢ I
different diffusive couplings on the dynamics of the model
0'5 L 3 <
System(Z). . _ . _ gzoﬁ%ozogémmmgw&goeggo ozooogo Z°§o°°%8§§ o izo TH °5><>:Z°Zo
We have systematically investigated the dynamical be ;og‘;oojgg K MO ?woo%fo“‘;ogn
. A . 04F %: ooog @o 60 88 °° ooo & 2%, OQ:
havior of Eqg. (2). Many interesting featurgs of_ such_ a s g O gsggpmm@fom BT
coupled system are observed from numerical simulations

The numerical results reported in this work are performed for %% 76 20 30 40 350 80 70 8 90
a=a’'=4, which corresponds to the fully developed chaos
regime. The lattice size is taken to Ibe=100. We notice

SPACE

that the lattice size may play a role near the pattern compe- FIG. 3. Amplitude-space plot for two different time intervals:
tition intermittency; otherwise its influence is minimal. (& 100 106<n<1000 110 andb) 100 606<n<1 000 610. The
Equation(2) with the above conditions reveals several dif- Parameters’ values are the same as in Fig. 2.

ferent dynamical behaviors.

For case(i), i.e., two identical systems, the following Both systems settle down in a spatially homogeneous, tem-

phases are observed.

(a) Synchronized oscillatioriFor sufficiently small values
of the couplingc, systemA is synchronized with syster®.
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porally periodic state of period 2, through pattern competi-
tion intermittency. In view of the chaotic dynamics of indi-
vidual sites and the very weak coupling, this may be
explained as the suppression of chaos by the selection of a
spatiotemporally regular state from among many coexisting
spatiotemporal orbits admitted by the system.

(b) Asynchronous chaotic statévhen the coupling is
raised a little, two systems desynchronize and exhibit spa-
tiotemporal chaos.

(c) Mutually synchronized spatiotemporal chaé®r in-
termediate coupling strength, in our case for approximately
0.19<¢<0.84, synchronization of spatiotemporal chaos is
achieved. We found that the time required for synchroniza-
tion is approximately inversely proportional to the coupling
strength. In a deep synchronization regifmerresponding to
large values ot), the two systems are desynchronized in a
couple of iterations if the coupling is switched dffe., by
settingc=c’=0). This characteristic may be useful in the
communications applications of synchronization of the spa-
tiotemporal chaos.

FIG. 2. Time evolution ofy,(13) for €=0.1, € =0.2, andc

=c’'=0.2. The amplitudex,(13) exhibits similar behavior. Only

the last 6000 steps are plotted.

(d) Bistable statesAs we further increase the coupling

the coupled systems may evolve into one of the two acces-

sible stable states, depending on the initial conditions.
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The two systems behave in a complementary way such thdbe traveling patterns. It is interesting to note that the two
when systenA settles down in one of the two possible spa-systems, represented by two variabkeandy, behave in a
tiotemporally homogeneous states, sysim@volves into the  synchronized manner. In fact, they are in a state of phase
other one, and vice versa. synchronization.

For larger values of the coupling, the coupled systein The existence of a traveling-wave solution to Ez). may
shows asynchronous spatiotemporal chaos, which may Hee attributed to the difference of spatial couplings in the two
termed defect-mediated turbulence in view of the way bysystems. Because the difference of the diffusive couplings
which the coupled systef2) becomes spatiotemporally cha- between the two individual systems may cause an aniso-
otic. Figure 1 shows the synchronization of spatiotemporatropic diffusion in the coupled systef®), this in turn leads
chaos. to the traveling wave, as observed in one-way logistic lat-

We now turn to caseii), wheree+# €’ is assumed. We tices. As suggested in RgR0], it is reasonable to expect the
choose that=0.1 ande’'=0.2. For such a system, a com- coexistence of traveling attractors with different velocities if
plete synchronization of both amplitude and phase seems twe change the nonlinearity.
be impossible. Nevertheless, phase synchronization with For intermediate values of the coupling we found a
chaotic modulation of the amplitudes is observed in our nuzigzag pattern that is spatially and temporally period 2. Both
merical simulations. In addition to the usual spatiotemporakystems oscillate synchronously with a constant difference
patterns found in CMLs, some different properties are unbetween their amplitudes. For large valuespthe coupled
covered. One of the most intriguing features of the coupledystem(2) is found in asynchronous chaotic states.
system(2) is the existence of traveling spatiotemporal pat- In conclusion, we have investigated numerically a one-
terns, which is similar to what is observed in the one-waydimensional two-variable coupled map lattice model system.
coupled logistic latticg 19] and CML with local phase slips Many interesting features of such a system, such as synchro-
[20]. However, the mechanism leading to such a symmetrynization of spatiotemporal chaos, bistable state, and a differ-
breaking transition shown by our model system seems to bent class of traveling spatiotemporal patterns, are discovered.
different from that discussed in R¢R20], where the traveling The symmetry-breaking transitions as manifested in the
wave is maintained by a local phase slip. Figure 2 shows thbistable dynamics and in the traveling waves with selected
time evolution of a selected individual site. Clearly seen isdirection and wavelength are rather remarkable in view of
the traveling wave of frozen spatiotemporal patterns consisthe symmetrical structure of our model systéh It should
ing of periodic, guasiperiodic, and defect turbulence statese stressed that even though the coupled syg2¢is simple
The period of this traveling wave is approximately  and abstract, it still can capture certain essential features of
=1000 and the wavelength seems to be the very size of theeal reaction-diffusion systems.
lattice. Then the velocity of the traveling wave is estimated In view of the recent interest in the synchronization of
asv~0.1 (sites per step The dynamics of this traveling chaotic signal$21-25, it is worthwhile to point out that Eq.
state may be described as periodic motion with chaotid2) also provides an approach to mutual synchronization of
modulation. The velocity of the traveling patterns may de-spatiotemporal chaos. We found that this method is very
pend on the system parameters, especially the diffusive cogeneral and robust in that it works for a wide range of system
pling e. Figure 3 shows the spatial structure at successiv@arameter values. We plan to give a detailed discussion in a
iterations, which illustrate the direction and the velocity of future work.
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